High Efficacy
365nm UV LED Emitter
LZ1-00U605

Key Features

- High Efficacy 365nm 5W UV LED
- Ultra-small foot print – 4.4mm x 4.4mm x 3.2mm
- Surface mount ceramic package with integrated glass lens
- Very low Thermal Resistance (5.5°C/W)
- Very high Radiant Flux density
- JEDEC Level 1 for Moisture Sensitivity Level
- Lead (Pb) free and RoHS compliant
- Reflow solderable (up to 6 cycles)
- Emitter available on Standard or Miniature MCPCB (optional)

Typical Applications

- Curing
- Sterilization
- Medical
- Currency Verification
- Fluorescence Microscopy
- Inspection of dyes, rodent and animal contamination
- Leak detection
- Forensics

Description

The LZ1-00U603 UV LED emitter provides superior radiometric power in the wavelength range specifically required for applications like curing, sterilization, currency verification, and various medical applications. With a 4.4mm x 4.4mm x 3.2mm ultra-small footprint, this package provides exceptional optical power density. The patented design has unparalleled thermal and optical performance. The high quality materials used in the package are chosen to optimize light output, have excellent UV resistance, and minimize stresses which results in monumental reliability and radiant flux maintenance.

UV Radiation
Avoid exposure to the beam
Wear protective eyewear
Table of Contents

Product Nomenclature ... 3
IPC/JEDEC Moisture Sensitivity ... 3
Radiant Flux Binning .. 4
Peak Wavelength Binning ... 4
Forward Voltage Binning .. 4
Absolute Maximum Ratings ... 5
Optical Characteristics ... 5
Electrical Characteristics .. 5
Mechanical Dimensions ... 6
Pin-Out ... 6
Recommended Solder Pad Layout .. 6
Reflow Soldering Profile .. 7
Typical Radiation Pattern .. 7
Typical Relative Spectral Power Distribution 8
Typical Peak Wavelength Shift over Temperature 8
Typical Normalized Radiant Flux .. 9
Typical Normalized Radiant Flux over Temperature 9
Typical Forward Current Characteristics 10
Current Derating Curves ... 10
Emitter Tape & Reel Specifications .. 11
Company Information .. 12
Product Nomenclature

The LZ Series part number designation is defined as follows:

\[\text{L} \ \text{Z} \ \text{A} \ - \ \text{B} \ \text{C} \ \text{D} \ \text{E} \ \text{F} \ \text{G} \ - \ \text{H} \ \text{J} \ \text{K} \ \text{L} \]

Base Part Number Bin Code

Where:
A – designates the number of LED die in the package (“1” for 5W)
B – designates the package level (“0” for Emitter)
C – designates the radiation pattern (“0” for Lambertian)
D and E – designate the color (“U6” - Typical UV Peak Wavelength = 365nm)
F and G – designate the Power (“05” for 5W typical rating)
H – designates the Radiant Flux bin (See Table 2)
J and K – designate the Peak Wavelength bin (see Table 3)
L – designates the \(V_F \) bin (See Table 4)

Ordering information:
For ordering LedEngin products, please reference the base part number. The base part number represents any of the radiant flux, peak wavelength, or forward voltage bins specified in the binning tables below. For ordering products with special bin selections, please contact a LedEngin sales representative or authorized distributor.

IPC/JEDEC Moisture Sensitivity Level

Table 1 - IPC/JEDEC J-STD-20D.1 MSL Classification:

<table>
<thead>
<tr>
<th>Level</th>
<th>Floor Life</th>
<th>Soak Requirements</th>
<th>Accelerated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Conditions</td>
<td>Time (hrs)</td>
</tr>
<tr>
<td>1</td>
<td>Unlimited</td>
<td>≤ 30°C/85% RH</td>
<td>168</td>
</tr>
</tbody>
</table>

Notes for Table 1:
1. The standard soak time includes a default value of 24 hours for semiconductor manufacturer’s exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor’s facility.
Radiant Flux Bins

Table 2:

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>Minimum Radiant Flux (Φ) @ IF = 700mA[^1,2] (mW)</th>
<th>Maximum Radiant Flux (Φ) @ IF = 700mA[^1,2] (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>134</td>
<td>168</td>
</tr>
<tr>
<td>D</td>
<td>168</td>
<td>210</td>
</tr>
</tbody>
</table>

Notes for Table 2:
1. Radiant flux performance guaranteed within published operating conditions. LedEngin maintains a tolerance of ± 10% on flux measurements.
2. Future products will have even higher levels of radiant flux performance. Contact LedEngin Sales for updated information.

Peak Wavelength Bins

Table 3:

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>Minimum Peak Wavelength (λP) @ IF = 700mA[^1] (nm)</th>
<th>Maximum Peak Wavelength (λP) @ IF = 700mA[^1] (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U0</td>
<td>365</td>
<td>370</td>
</tr>
<tr>
<td>U1</td>
<td>370</td>
<td>375</td>
</tr>
</tbody>
</table>

Notes for Table 3:
1. LedEngin maintains a tolerance of ± 2.0nm on peak wavelength measurements.

Forward Voltage Bins

Table 4:

<table>
<thead>
<tr>
<th>Bin Code</th>
<th>Minimum Forward Voltage (V_f) @ IF = 700mA[^1] (V)</th>
<th>Maximum Forward Voltage (V_f) @ IF = 700mA[^1] (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.68</td>
<td>4.88</td>
</tr>
</tbody>
</table>

Notes for Table 4:
1. LedEngin maintains a tolerance of ± 0.04V for forward voltage measurements.
Absolute Maximum Ratings

Table 5:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Forward Current[1]</td>
<td>I_F</td>
<td>700</td>
<td>mA</td>
</tr>
<tr>
<td>Peak Pulsed Forward Current[2]</td>
<td>I_{FP}</td>
<td>1000</td>
<td>mA</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>V_R</td>
<td>See Note 3</td>
<td>V</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stg}</td>
<td>-40 ~ +150</td>
<td>°C</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Temperature</td>
<td>T_{sol}</td>
<td>180</td>
<td>°C</td>
</tr>
<tr>
<td>Allowable Reflow Cycles</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ESD Sensitivity[4]</td>
<td></td>
<td>> 2,000 V HBM</td>
<td></td>
</tr>
</tbody>
</table>

Notes for Table 5:
1. Maximum DC forward current is determined by the overall thermal resistance and ambient temperature. Follow the curves in Figure 10 for current derating.
2. Pulse forward current conditions: Pulse Width ≤ 10msec and Duty Cycle ≤ 10%.
3. LEDs are not designed to be reverse biased.
4. LedEngin recommends taking reasonable precautions towards possible ESD damages and handling the LZ1-00U605 in an electrostatic protected area (EPA). An EPA may be adequately protected by ESD controls as outlined in ANSI/ESD S6.1.

Optical Characteristics @ $T_C = 25°C$

Table 6:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typical</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiant Flux (@ $I_F = 700$mA)</td>
<td>Φ</td>
<td>160</td>
<td>mW</td>
</tr>
<tr>
<td>Peak Wavelength[1]</td>
<td>λ_P</td>
<td>368</td>
<td>nm</td>
</tr>
<tr>
<td>Viewing Angle [2]</td>
<td>$2\Theta_{1/2}$</td>
<td>85</td>
<td>Degrees</td>
</tr>
<tr>
<td>Total Included Angle [3]</td>
<td>Θ_{20V}</td>
<td>100</td>
<td>Degrees</td>
</tr>
</tbody>
</table>

Notes for Table 6:
1. When operating the UV LED, observe IEC 60825-1 class 3B rating. Avoid exposure to the beam.
2. Viewing Angle is the off axis angle from emitter centerline where the radiometric power is 1/2 of the peak value.
3. Total Included Angle is the total angle that includes 90% of the total radiant flux.

Electrical Characteristics @ $T_C = 25°C$

Table 7:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Typical</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward Voltage (@ $I_F = 700$mA)</td>
<td>V_F</td>
<td>4.1</td>
<td>V</td>
</tr>
<tr>
<td>Temperature Coefficient of Forward Voltage</td>
<td>$\Delta V_F/\Delta T_J$</td>
<td>-3.7</td>
<td>mV/°C</td>
</tr>
<tr>
<td>Thermal Resistance (Junction to Case)</td>
<td>$R_{\Theta_{J-C}}$</td>
<td>5.5</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Notes for Figure 3:
1. Unless otherwise noted, the tolerance = ± 0.20 mm.
2. Thermal contact, Pad 5, is electrically connected to the Anode, Pads 2 and 3. Do not electrically connect any electrical pads to the thermal contact, Pad 5. LedEngin recommends mounting the LZ1-00U605 to a MCPCB that provides insulation between all electrical pads and the thermal contact, Pad 5. LedEngin offers LZ1-10U605 and LZ1-30U605 MCPCB options which provide both electrical and thermal contact insulation with low thermal resistance. Please refer to Application Note MCPCB Options 1 and 3, or contact a LedEngin sales representative for more information.

Recommended Solder Pad Layout (mm)

Note for Figure 4:
1. Unless otherwise noted, the tolerance = ± 0.20 mm.
Reflow Soldering Profile

Figure 3: Reflow soldering profile for low temperature lead free soldering.

Notes for Figure 3:
1. Solder profile for low temperature solder. LedEngin recommends 58Bi-42Sn (wt.%) Solder for the LZ4-00UA05.

Typical Radiation Pattern

Figure 4: Typical representative spatial radiation pattern.
Typical Relative Spectral Power Distribution

Figure 5: Typical relative spectral power vs. wavelength @ $T_C = 25^\circ{}C$.

Typical Peak Wavelength Shift over Temperature

Figure 6: Typical peak wavelength shift vs. case temperature.
Figure 7: Typical normalized radiant flux vs. forward current @ $T_c = 25^\circ$C.

Figure 8: Typical normalized radiant flux vs. case temperature.
Typical Forward Current Characteristics

![Graph of Typical Forward Current Characteristics]

Figure 9: Typical forward current vs. forward voltage @ $T_C = 25^\circ C$.

Current Derating

![Graph of Current Derating]

Figure 10: Maximum forward current vs. ambient temperature based on $T_{J(MAX)} = 125^\circ C$.

Notes for Figure 10:
1. $R_{J,C}$ [Junction to Case Thermal Resistance] for the LZ1-00U605 is typically $5.5^\circ C/W$.
2. $R_{J,A}$ [Junction to Ambient Thermal Resistance] = $R_{J,C} + R_{C,A}$ [Case to Ambient Thermal Resistance].
Emitter Tape and Reel Specifications (mm)

Figure 11: Emitter carrier tape specifications (mm).

Figure 12: Emitter reel specifications (mm).

Notes:
1. Reel quantity minimum: 100 emitters. Reel quantity maximum: 2000 emitters
Company Information

LedEngin, Inc. is a Silicon Valley based solid-state lighting company specializing in the development and manufacturing of unprecedented high-power LED emitters, modules and replacement lamps. LedEngin’s packaging technologies lead the industry with products that feature lowest thermal resistance, highest flux density and consummate reliability, enabling compact and efficient solid state lighting solutions.

LedEngin’s LED emitters range from 3W to 90W with ultra-compact footprints and are available in single color products including Cool White, Neutral White, Warm White, Red, Green, Blue, Amber, Deep Red, Far Red, Dental Blue and UV as well as multi-color products with RGB, RGBA and RGBW options. LedEngin’s brightest White LEDs are capable of emitting 5,500 lumens.

LedEngin’s robust emitters are at the core of its unique line of modules and replacement lamps producing unmatched beam quality resulting in true Lux on Target™ for a wide variety of spot and narrow flood directional lighting applications.

LedEngin is committed to providing products that conserve natural resources and reduce greenhouse emissions.

LedEngin reserves the right to make changes to improve performance without notice.

Please contact Sales@ledengin.com or (408) 492-0620 for more information.